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A reinforced non-negativity criterion. By Tor LOrGreN, Institute of Chemistry, University of Uppsala,

Uppsala, Sweden

The non-negativity of the expected g function is its only
property that is used to advantage in deriving the Harker
& Kasper (1948) or the Karle & Hauptman (1950)
inequalities. The resulting relations prove weak for space
groups with no translational symmetry (Loéfgren, 1960).
A natural extension of the non-negativity criterion is to
claim that every p interval, (g, ¢ +dp), is represented by
the correct volume, A(p).dg, in the unit cell (Lofgren,
1961). General A criteria are evidently more powerful
than the non-negativity criterion (A(g)=0 for p<0),
but at the same time, the relations are far more com-
plicated than, say, the Harker—Kasper inequalities. There
Is sometimes an alternative way of introducing condi-
tions additional to those of non-negativity without,
however, essentially changing the practical tractability.
The traditional principle of non-negativity states
(or should state; compare footnote below) that there exist
¢F(h)’s (for the prefix g, see Lofgren, 1960) such that
|gF'(h)| is equal to, say, the ‘unitarized’ observed struc-
ture amplitudes, |U(h)|, in so far as these are experimen-
tally available, and such that, everywhere, 4o(r) > 0 for
correct phases. Fig. 1 is an arbitrary one-dimensional case,
the full curve giving g0 for some incorrect phase angles.
The diagonally shaded surface is a ‘forbidden’ area.
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Fig. 1. The full curve gives 49 for 4ncorrect phase angles, the
dashed curves give the contribution to the correct go from
atoms with known positions. Shaded areas are forbidden
according to the reinforced non-negativity criterion.

For correct phases, 40(r) is approximately equal to the
model
2 em(r—Trwm) -
n

Now, if it is assumed that some atom or atoms have
known positions, additional forbidden areas—horizon-
tally shaded in Fig. 1-—might appear. Our reinforced
criterion is then, that for correct phases,

g0(t) = 3 g0(m)(r ~T(m)) = 0, (1)

the prime indicating summation for (any choice among)
the atoms with known positions. Expressed in terms of,
say, Harker—Kasper inequalities, the U(h)’s may be
replaced by the ‘unitarized’

U(h) — 3'gf(n)-exp [2nih.1(n)]

n , 2
T= ofm @

Vh) =

(Received 29 December 1960)

where ;f(z), corresponding to go(»)(r), is that part of the
total electron content of the cell attributed to the mth
atom.*

Any inequality can be written

o(UM), Uh”), ..., Uh®) >0, (3)

where C is some function of the U’s (or V’s) considered.
For a centrosymmetric case, C(z’, ", .. LaM)=0 is a
surface in a v-dimensional space dividing the space in
one forbidden part and one allowed part containing
the origin. (An example is found in the paper by Klug
(1958), Fig. 4.) If we set «'= +|U")|, /= +|U(h")|,
ete., we get 2” points, of which certain may fall outside
the surface C'=0. If so, certain sign combinations are
excluded. The symmetry of the 2” points and of the sur-
face C =0 is generally such that the result can be ex-
pressed as a sign relation. The setting (cf. (2))

' = (+|UM)| - 3 gfn)-exp [2h" . v )]/ (1 = 3 gfin)) 5

etc., implies that each of the 2¥ vectors
(UMY, £]UM7), ...)
is increased by the same vector

(= X'afin).exp [27th".T(n)],
" ~Z'of ) -exp [2m0" X (m)], . ..),
n

and the resulting vectors increased in length by the factor
(1= Zofm).
n

The original symmetry is thereby destroyed and the
result is not generally expressible as a sign relation but
as excluded sign combinations. The exclusion of certain
sign combinations is evidently a less valuable result,
especially for large »’s, than are sign relations. However,
definite signs are more likely results for V’s than for U’s.

With respect to statistical results and common ex-
perience, it is of interest to notice that anyone of the
points (£ U(h’), £+ U(M”), ...) lying close to but inside
the surface C' =0, has a high probability of leading to a
corresponding point (+V(h'), + V(h"), ...) lying out-
side this surface. For instance, if there exists any group
of atoms in the cell giving very small contributions to
the U’s considered, the vector (+V(h’), £+ V(h"), ...)
is simply the vector (+U(h’), +U(h”), ...) increased
in length by the factor

a —%"gf(n))“l,

where ¥ includes the group of atoms in question.
Some constructed examples have been worked through

* Such constant gfiny(h)’s are generally used to define a
‘point atom’; evidently, they do not define a convergent
function of r. Starting with, say, a Gaussian atom (Gaussian
transform) a non-negative ‘point atom’ can be defined, how-
ever, by a limiting process, satisfying the definition of f((h),
given in the text, for any finite part of the reciprocal space.
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in order to make an empirical assessment of the relative
powers of the traditional and reinforced inequalities. It
was then found that the reinforced criterion can give
definite signs and several exclusions of sign combinations,
even when the traditional inequalities gave no informa-
tion.

If the known atoms are in positions having the same
symmetry as the rest of the structure, no particular type
of inequality is expected to be especially affected. In
the case where the atoms with known positions define
a higher symmetry than the rest, certain inequalities will
be reinforced to a greater extent than others. However,
since it would be natural to calculate

2'sfn)-exp [2ath. .1 )]
n

for all h’s simultaneously, there is little point in discussing
particular situations in detail. It is evident that a sum,
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2'efiny-exp [2dh.r(p)] ,
n

that is large, whatever the cause might be, is particularly
capable of increasing the power of an inequality.

It seems specially valuable to consider the reinforce-
ment proposed here in the case in which some atomic
positions are determined by symmetry, because

2'ofn).0xp [2nih.1n)]
n
is then exactly known, and V very easily found from U.
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Cell parameters and space groups of potassium, rubidium, and cesium acid chloromaleates.*
By R.D. ErrisoN, H. A. LEvy, and S. W. PETERsON, Chemistry Division, Oak Ridge National Laboratory, Oak

Ridge, Tennessee, U.S. 4.

(Received 28 February 1961)

The cell parameters and space groups of the potassium,
rubidium, and cesium acid chloromaleates

(HOOC.CCl: CH.COOM, where M =K, Rb, or Cs)

grown from aqueous solution were determined. Prelim-
inary values of the cell constants as well as symmetry
information were found from photographs prepared with
Mo K« radiation on the precession camera. Powder
diffraction data taken with a Debye—Scherrer camera
and Cr Ko radiation were used in subsequent least-
squares refinements of the cell dimensions. Densities
were measured pycnometrically; the supporting liquid
was n-decane.

Potassium acid chloromaleate was found to be ortho-
rhombic. Precession camera pictures indexed as hOl, k11,
h2l, Okl, 1ki, 2kl, and hkO display the following systematic
absences: none among reflections hkl; hkO reflections
present only if A +k=2n; RO, only if !=2n; and OKI,
only if k=2n. These absences indicate the space group

* Work performed for the U.S. Atomic Energy Commission
at the Oak Ridge National Laboratory, operated by the Union
Carbide Corporation, Oak Ridge, Tennessee.

Pben. A previous report (Yardley, 1925) gave cell dimen-
sions in good agreement with those of this study, but a
different space group (Pmcn, referred to the present axis
orientation). The disagreement rests on two weak reflec-
tions which are absent on our photographs.

The space group of the two isomorphous monoclinic
salts rubidium and cesium acid chloromaleate was not
uniquely determined. On the precession camera pictures
hkO, hkl, hk2, Okl, 1kl, and 2kl, the only systematic
absences noted were those for which A+k+1=2n+1.
Of the three space groups Im, I2 and I2/m, which are
consistent with these absences, the last is considered
unlikely because it requires that two chloromaleate ions
lie in mirror planes in the approximately five by eight
Angstrom face of the cell.

The findings of this study are summarized in Table 1.
In the monoclinic cases, the more usual C-centered cell
is included, but the body-centercd ccll with § close to 90°
is retained for convenience. The observed interplanar
spacings, corrected for error due to absorption in the
specimen (Klug & Alexander, 1954), are compared with
the calculated values in Tables 2, 3, and 4. Indexing of

Table 1. Crystallographic data for potassium, rubidium, and cesium acid chloromaleates

Rubidium Cesium
Body-centered C-centered Body-centered C-centered
Potassium indexing indexing indexing indexing
Crystal system Orthorhombic Monoclinic Monoclinic Monoclinic Monoclinic
a 15-815+0-015 A 811240003 A 961 A 8:352+0-007 A 9-87 A
b 10-928 + 0-006 16-6381-0-011 16-64 17-32540-014 17-33
c 7-707 4 0-005 5:090 £ 0-003 5-09 5-152 4 0-004 5-15
B — 90° 28’ + 4’ 122° 26’ 90° 45 + 5 122° 127
Space group Pben Im or I2 Cm or C2 Im or I2 Cm or C2
Molecules/cell 8 4 4
Calculated density 1-881 g.cm. ™3 2:272 g.cm.™8 2-516 g.cm,™3
Observed density 1-868 2-246 2515

The errors listed are least-squares standard deviations.



